Integrating Textural and Spectral Features to Classify Silicate-Bearing Rocks Using Landsat 8 Data
نویسندگان
چکیده
Texture as a measure of spatial features has been useful as supplementary information to improve image classification in many areas of research fields. This study focuses on assessing the ability of different textural vectors and their combinations to aid spectral features in the classification of silicate rocks. Texture images were calculated from Landsat 8 imagery using a fractal dimension method. Different combinations of texture images, fused with all seven spectral bands, were examined using the Jeffries–Matusita (J–M) distance to select the optimal input feature vectors for image classification. Then, a support vector machine (SVM) fusing textural and spectral features was applied for image classification. The results showed that the fused SVM classifier achieved an overall classification accuracy of 83.73%. Compared to the conventional classification method, which is based only on spectral features, the accuracy achieved by the fused SVM classifier is noticeably improved, especially for granite and quartzose rock, which shows an increase of 38.84% and 7.03%, respectively. We conclude that the integration of textural and spectral features is promising for lithological classification when an appropriate method is selected to derive texture images and an effective technique is applied to select the optimal feature vectors for image classification.
منابع مشابه
Monitoring Plastic-Mulched Farmland by Landsat-8 OLI Imagery Using Spectral and Textural Features
In recent decades, plastic-mulched farmland has expanded rapidly in China as well as in the rest of the world because it results in marked increases of crop production. However, plastic-mulched farmland significantly influences the environment and has so far been inadequately investigated. Accurately monitoring and mapping plastic-mulched farmland is crucial for agricultural production, environ...
متن کاملSPOT-5 Spectral and Textural Data Fusion for Forest Mean Age and Height Estimation
Precise estimation of the forest structural parameters supports decision makers for sustainable management of the forests. Moreover, timber volume estimation and consequently the economic value of a forest can be derived based on the structural parameter quantization. Mean age and height of the trees are two important parameters for estimating the productivity of the plantations. This research ...
متن کاملSurface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California
The NASA airborne Thermal Infrared Multispectral Scanner (TIMS) was flown over Death Valley, California on both a daytime flight and a nighttime flight within a two-day period in July 1983. This Daedulus scanner has six channels in the thermal infrared, between 8 and 12 pm. Calibrated digital spectral radiance data from these flights, along with Landsat Thematic Mapper (TM) reflectance data, pe...
متن کاملEstimation of Maize Residue Cover Using Landsat-8 OLI Image Spectral Information and Textural Features
The application of crop residue has become increasingly important for providing a barrier against water and wind erosion and improving soil organic matter content, infiltration, evaporation, temperature, and soil structure. The objectives of this work were to: (i) estimate maize residue cover (MRC) from Landsat-8 OLI images using seven vegetation indices (VIs) and eight textural features; and (...
متن کاملObject-Based Greenhouse Mapping Using Very High Resolution Satellite Data and Landsat 8 Time Series
Greenhouse mapping through remote sensing has received extensive attention over the last decades. In this article, the innovative goal relies on mapping greenhouses through the combined use of very high resolution satellite data (WorldView-2) and Landsat 8 Operational Land Imager (OLI) time series within a context of an object-based image analysis (OBIA) and decision tree classification. Thus, ...
متن کامل